Math 115
Spring 2017
Lecture 16

Exponential Rules:
(1) $x^{n}=\underbrace{x \cdot x \cdot x \cdot \cdots \cdot x}_{n \text { times }}$
(2) $x^{1}=x$
(3) $x^{0}=1, x \neq 0$,
(4) $x^{m} \cdot x^{n}=x^{m+n}$
$5\left(x^{m}\right)^{n}=x^{m \cdot n}$
(6) $(x y)^{n}=x^{n} y^{n}$
(7) $\frac{x^{m}}{x^{n}}=x^{m-n}$
(8) $\left(\frac{x}{y}\right)^{n}=\frac{x^{n}}{y^{n}}$
(9) $x^{-n}=\frac{1}{x^{n}}$
(10) $\frac{x^{-m}}{y^{-n}}=\frac{y^{n}}{x^{m}}$
(11) $\left(\frac{x}{y}\right)^{-n}=\left(\frac{y}{x}\right)^{n}$

Simplify

1) $\left(x^{3}\right)^{5} \cdot x^{2}$

$$
=x^{15} \cdot x^{2}=x^{17}
$$

(3) $\left(-3 x^{6}\right)^{3}$

$$
\begin{aligned}
& =(-3)^{3}\left(x^{6}\right)^{3} \\
& =-27 x^{18}
\end{aligned}
$$

2) $\frac{\left(x^{5}\right)^{4}}{x^{7}}=\frac{x^{20}}{x^{7}}=x^{13}$
(4) $\frac{x^{-2} y^{10}}{x^{13} y^{-4}}$
$=\frac{y^{4} y^{10}}{x^{13} x^{2}}$

$$
=\frac{y^{14}}{x^{15}}
$$

Distribute $\dot{\varepsilon}$ simplify

$$
\text { 1) } \begin{aligned}
& 4\left(3 x^{2}+5 x-2\right)-3\left(4 x^{2}+7 x-3\right) \\
&= 12 x^{2}+20 x-8-12 x^{2}-21 x+9 \\
&=-1 x+1=-x+1
\end{aligned}
$$

2)

$$
\begin{aligned}
& x^{2}\left(3 x^{2}-5\right)-4 x\left(x^{2}+5 x-1\right) \\
= & 3 x^{3}-5 x^{2}-4 x^{3}-20 x^{2}+4 x \\
= & =x^{3}-25 x^{2}+4 x
\end{aligned}
$$

$$
\text { 3) } \begin{aligned}
& 5 x^{3} y^{2}\left(4 x^{2} y^{3}-10 x y+1\right) \\
= & 20 x^{5} y^{5}-50 x^{4} y^{3}+5 x^{3} y^{2}
\end{aligned}
$$

$$
x^{3} \cdot x^{2}=x^{3+2}=x^{5}
$$

Use FoIL To multiply:
(1)

$$
\begin{aligned}
& 1(x+2)(x+5) \\
& =x^{2}+5 x+2 x+10 \\
& =x^{2}+7 x+10
\end{aligned}
$$

$(5 x-2)(3 x-4)$

$$
=15 x^{2}-20 x-6 x+8
$$

$$
=15^{2}-26 x+8
$$

(2)

$$
\text { 2) } \begin{aligned}
& (2 x+3)(x-4) \\
= & 2 x^{2}-8 x+3 x-12 \\
= & 2 x^{2}-5 x-12
\end{aligned}
$$

(4) $(3 x+4)(3 x-4)$

$$
=9 x^{2}=12 x+12 x-16
$$

$$
=9 x^{2}-16
$$

(5)

$$
\begin{aligned}
& (x+2)\left(x^{2}-2 x+4\right) \\
& =x^{3}-2 x^{2}+4 x+2 x^{2}-4 x+8 \\
& =x^{3}+8
\end{aligned}
$$

Special Products:

$$
\begin{aligned}
(A+B)^{2} & =A^{2}+2 A B+B^{2} \\
(x+7)^{2} & =x^{2}+2 \cdot x \cdot 7+7^{2} \\
& =x^{2}+14 x+49 \\
(3 x+5)^{2} & =(3 x)^{2}+2 \cdot(3 x)(5)+(5)^{2} \\
& =9 x^{2}+30 x+25 \\
\left(4 x^{3}+7 x^{2}\right)^{2} & =\left(4 x^{3}\right)^{2}+2\left(4 x^{3}\right)\left(7 x^{2}\right)+\left(7 x^{2}\right)^{2} \\
& =16 x^{6}+56 x^{5}+49 x^{4}
\end{aligned}
$$

$$
\begin{aligned}
(A-B)^{2} & =A^{2}-2 A B+B^{2} \\
(x-3)^{2} & =x^{2}-2 \cdot x \cdot 3+3^{2} \\
& =x^{2}-6 x+9 \\
(2 x-5)^{2} & =(2 x)^{2}-2(2 x)(5)+(5)^{2} \\
& =4 x^{2}-20 x+25 \\
\left(3 x^{2}-4 y^{3}\right)^{2} & =\left(3 x^{2}\right)^{2}-2\left(3 x^{2}\right)\left(4 y^{3}\right)+\left(4 y^{3}\right)^{2} \\
& =9 x^{4}-24 x^{2} y^{3}+16 y^{6}
\end{aligned}
$$

$$
\begin{aligned}
(\underbrace{(A+B)(A-B)}_{\text {Conjugates }} & =A^{2}-B^{2} \\
(5 x+3)(5 x-3) & =(5 x)^{2}-(3)^{2}=25 x^{2}-9 \\
(8 x-10)(8 x+10) & =(8 x)^{2}-(10)^{2}=64 x^{2}-100 \\
\left(4 x^{2}+9\right)\left(4 x^{2}-9\right) & =\left(4 x^{2}\right)^{2}-(9)^{2} \\
& =16 x^{4}-81
\end{aligned}
$$

find the area $\dot{\varepsilon}$ perimeter

$$
\begin{aligned}
& P=2 L+2 \omega \\
& P=2 L+2 W \\
& A=L W \\
& 5 x^{3}+4 \\
& A=L W \\
& 5 x^{3}-4=2\left(5 x^{3}+4\right)+ \\
& 2\left(5 x^{3}-4\right) \\
& =10 x^{3}+8+10 x^{3}-8 \\
& =20 x^{3} \\
& =\frac{\left(5 x^{3}+4\right)\left(5 x^{3}-4\right.}{\text { Conjugates }} \\
& =\left(5 x^{3}\right)^{2}-(4)^{2}=25 x^{6}-16
\end{aligned}
$$

Find A E P :

Simplify

$$
\begin{array}{ll}
\begin{array}{ll}
\text { Simplify } \\
\text { (1) } \frac{3^{6} 0 x^{12} y^{8}}{5 x^{3} y^{6}} & \text { (2) } \frac{-24 x^{18} y^{3}}{x x^{10} y^{10}} \\
=\frac{-6 x^{8}}{y^{7}} \\
\frac{-35 x^{14} y^{2}}{-5 x^{-6} y^{12}} & =\frac{7 x^{14} x^{6}}{y^{3} y^{12}}=\frac{7 x^{20}}{y^{15}}
\end{array}
\end{array}
$$

use $\left(\frac{x}{y}\right)^{-n}=\left(\frac{y}{x}\right)^{n}$ to simplify
(1) $\left(\frac{3 x}{4 y}\right)^{-2}$
(2) $\left(\frac{5 x^{3}}{y^{10}}\right)^{-3}$
$=\left(\frac{4 y}{3 x}\right)^{2}$
$=\left(\frac{y^{10}}{5 x^{3}}\right)^{3}$

$$
=\frac{16 y^{2}}{9 x^{2}}
$$

$$
=\frac{y^{30}}{125 x^{9}}
$$

Simplify
Hint: Make Sure

$$
\left(\frac{-2 x^{-4}}{3 y^{-8}}\right)^{-4}
$$ exponents inside () are positive first.

$$
=\left(\frac{-2 y^{8}}{3 x^{4}}\right)^{-4}=\left(\frac{3 x^{4}}{-2 y^{8}}\right)^{4}=\frac{3^{4}\left(x^{4}\right)^{4}}{(-2)^{4}\left(y^{8}\right)^{4}}=\frac{81 x^{16}}{16 y^{32}}
$$

Scientific Notation

(1) 2.5×10^{-17}
(2) $6.75 \times 10^{32} p$

indicates large number

$$
.00 \underbrace{.00000000000}_{17 \text { times }} 25
$$

$$
\underbrace{675000000000 \cdots 0}_{32 \text { times }}
$$

$$
\begin{aligned}
& \text { Simplify } \\
& (\underbrace{\left.1.5 \times 10^{12}\right)}_{=} \cdot(\underbrace{2.8} \times 10^{(7)}) \\
& =4.2 \times 10^{12+7}=4.2 \times 10^{19} \\
& (\underbrace{8.3} \times 10^{-15}) \cdot(\underbrace{\left.7.5 \times 10^{-10}\right)} \\
& =\underbrace{62.25}_{6} \times 10^{-25} \\
& =6.225 \times 10^{1} \times 10^{-25}=6.225 \times 10^{-24}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{l}
\left(\frac{9.4}{=} \times 10^{-17}\right) \cdot\left(\stackrel{(8.5}{=} \times 10^{-14}\right) \\
=79.9 \times 10^{-17+(-14)} \\
=79.9 \times 10^{-31}=7.99 \times 10^{1} \times 10^{-31} \\
=7.99 \times 10^{1+(-31)}=7.99 \times 10^{-30} \\
\begin{array}{l}
4.8 \times 10^{25} \\
2.5 \times 10^{10}= \\
=
\end{array}
\end{array}=1.92 \times 10^{25-10}=1.92 \times 10^{15}\right.
\end{aligned}
$$

Simplify

$$
\begin{aligned}
& \frac{1.5}{\frac{1}{6} \times 0^{-18}} 10^{12} \\
&=.25 \times 10^{-18-12}=.25 \times 10^{-30} \\
&=2.5 \times 10^{-1} \times 10^{-30} \\
&=2.5 \times 10^{-31}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{4.25}{8.5 \times 10^{23}} \times 10^{-12} \\
& =.5 \times 10^{23-(-12)} \\
& =.5 \times 10^{35}=5 \times 10^{-1} \times 10^{35}=5 \times 10^{34} \\
& \text { Monomial } \rightarrow \text { Number } \cdot \text { variable (s) }{ }^{\text {whole } *} \\
& \text { ex: } 6 x^{3},-7 x^{2} y^{4}, \frac{2}{3} x^{3} y^{2} z, 1000
\end{aligned}
$$

$$
25 x^{3}-100 x^{2}
$$

Monomial	Coff.	Degree	For the binomial
$25 x^{3}$	25	3	$\begin{array}{c}\text { Deg. }=3 \\ \text { Leading } \\ -100 x^{2}\end{array}$
-100	2	$\begin{array}{c}\text { Cos. }\end{array}$	
$\begin{array}{ll}10 x^{3} y^{8}+2 x^{7} y^{6} & \text { for the binomial }\end{array}$			

Monomial	Deg.	Coff
$10 x^{3} y^{8}$	11	10
$2 x^{7} y^{6}$	13	2

for the binomial

$$
\begin{aligned}
& \text { Deg. }=13 \\
& \text { L.C. }=2
\end{aligned}
$$

$$
4 x^{6} y^{8} z^{4}-250 x y z
$$

Monomial	Coef.	Degree
$4 x^{6} y^{8} z^{4}$	4	$6+8+4=18$
$-250 x y z$	-250	$1+1+1=3$

for Brno.

$$
D=18
$$

$$
\text { LC. }=4
$$

(Constant is a monomial without Variable. Deg. $=0$.
2017, Deg. $=0$

Polynomial: When monomials are Separated by + or -.
Monomial \rightarrow Polynomial with 1 term.
Binomial $\rightarrow=2$ terms.
Trinomial \rightarrow " 3 terms

$$
\begin{aligned}
& \underbrace{18 x^{12} y^{10}}_{\text {Coff. }=18} \quad \underbrace{-44 x^{8} y^{10}}_{\begin{array}{c}
\text { Coff. }=-44 \\
D=22
\end{array}}+\underbrace{100 x y}_{\begin{array}{c}
\text { Coff. }=100 \\
D=2 \\
D \text { degree }=22, \\
D=18 \\
\text { Constant } \\
D=0
\end{array}} \underbrace{40000}
\end{aligned}
$$

Dividing Polynomial by Monomial:

$$
\begin{aligned}
& \frac{28 x^{3}+14 x^{2}+7 x}{7 x} \\
& =\frac{28 x^{3}}{7 x}+\frac{14 x^{2}}{7 x}+\frac{7 x}{7 x} \\
& =4 x^{2}+2 x+1
\end{aligned}
$$

Divide

$$
\begin{aligned}
& \frac{35 x^{4}-25 x^{2}+5 x}{-5 x} \\
& =\frac{35 x^{4}}{-5 x}-\frac{25 x^{2}}{-5 x}+\frac{5 x}{-5 x} \\
& =-7 x^{3}+5 x-1 \quad \frac{24 x^{6}}{4 x^{2}}-\frac{12 x^{4}}{4 x^{2}}+\frac{16 x^{2}}{4 x^{2}} \\
& \frac{24 x^{6}-12 x^{4}+16 x^{2}}{4 x^{2}}=\begin{array}{l}
=6 x^{4}-3 x^{2}+4 \\
\text { Deg. } 4, \text { Con } t=4 \\
L C=6
\end{array}
\end{aligned}
$$

$$
\begin{array}{|l}
\begin{array}{c}
\text { Simplify } \\
10 x^{4} y^{3}-20 x^{2} y+30 x y^{2}
\end{array} 10 x^{2} y^{2} \\
=\frac{10 x^{4} y^{3}}{10 x^{2} y^{2}}-\frac{20 x^{2} y}{10 x^{2} y^{2}}+\frac{30 x y^{2}}{10 x^{2} y^{2}} \\
=x^{2} y-\frac{2}{y}+\frac{3}{x} \begin{array}{l}
\text { Sot a } \\
\text { Due } \\
\text { Tuesday } \\
\text { because } \\
\text { variable left } \\
\text { in the dent. }
\end{array} \\
\hline
\end{array}
$$

